

Title	Electrochemical conversion of carbon dioxide to formic acid on nanostructured electrocatalysts
PI	Abdirisak Ahmed Isse
Research Group	Electrocatalysis and Applied Electrochemistry (EAEG)
Curriculum	Scienze Chimiche
Location	Dipartimento di Scienze Chimiche (DiSC)
Contact	web: wwwdisc.chimica.unipd.it/electrochem
	Email: abdirisak.ahmedisse@unipd.it

Project description:

The reduction of CO_2 global emissions through its efficient transformation into more valuable chemicals would have a huge impact in the current efforts to meet the environmental and climate goals of the European Green Deal. The electrochemical reduction of CO_2 , ERCO₂, is considered one of the most promising strategies to convert waste- CO_2 to value-added chemicals, such as CO, formic acid, methanol, methane, etc. A large variety of heterogeneous and homogeneous catalytic systems have been employed for ERCO2 to produce various products. However, the current CO_2 reduction technologies are plagued by poor selectivity for valuable products and low cell efficiency.

The aim of this research project is to develop an economic and efficient $ERCO_2$ route to formic acid, using tin-based electrodes. Sn is one of the best electrode materials for CO_2 reduction to formic acid but the electrochemical process suffers from various drawbacks including low CO_2 solubility in water, low current density, high energy consumption and low final FA concentration. Various strategies will be explored to overcome these problems:

- To enhance the cell current highly porous Sn foam electrodes and Sn-doped high surface area nitrogen-enriched mesoporous carbons (NMCs) will be prepared and utilized as cathodes. NMCs and Sn-doped NMCs will be prepared via soft-template synthesis from copolymers prepared by electrochemically-mediated atom transfer radical polymerization. Preparation of Sn foam electrodes with highly porous nanostructured walls will be based on electrodeposition via the hydrogen bubble dynamic template method.
- Two approaches will be considered to increase CO₂ concentration in solution: (i) utilization of pressurized electrochemical cells and (ii) a change of reaction medium from pure water to organic solvent/water mixtures.
- To improve the economics of the process, the commonly used oxidation of water at the anode will be replaced with a valuable oxidation reaction (paired electrolysis) such as anodic conversion of methanol to formic acid.